On endpoint regularity criterion of the 3D Navier–Stokes equations

نویسندگان

چکیده

Let $(u, \pi)$ with $u=(u_1,u_2,u_3)$ be a suitable weak solution of the three dimensional Navier-Stokes equations in $\mathbb{R}^3\times [0, T]$. Denote by $\dot{\mathcal{B}}^{-1}_{\infty,\infty}$ closure $C_0^\infty$ $\dot{B}^{-1}_{\infty,\infty}$. We prove that if $u\in L^\infty(0, T; \dot{B}^{-1}_{\infty,\infty})$, $u(x, T)\in \dot{\mathcal{B}}^{-1}_{\infty,\infty})$, and $u_3\in L^{3, \infty})$ or \dot{B}^{-1+3/p}_{p, q})$ $3<p, q< \infty$, then $u$ is smooth Our result improves previous established Wang Zhang [Sci. China Math. 60, 637-650 (2017)].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations

We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...

متن کامل

An Osgood Type Regularity Criterion for the 3D Boussinesq Equations

We consider the three-dimensional Boussinesq equations, and obtain an Osgood type regularity criterion in terms of the velocity gradient.

متن کامل

On the regularity criterion of weak solution for the 3D viscous Magneto-hydrodynamics equations

Here u, b describe the flow velocity vector and the magnetic field vector respectively, p is a scalar pressure, ν > 0 is the kinematic viscosity, η > 0 is the magnetic diffusivity, while u0 and b0 are the given initial velocity and initial magnetic field with ∇ · u0 = ∇ · b0 = 0. If ν = η = 0, (1.1) is called the ideal MHD equations. As same as the 3D Navier-Stokes equations, the regularity of ...

متن کامل

Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity∗

In this short note, we give a link between the regularity of the solution u to the 3D Navier-Stokes equation, and the behavior of the direction of the velocity u/|u|. It is shown that the control of div(u/|u|) in a suitable Lpt (L q x) norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dynamics of Partial Differential Equations

سال: 2021

ISSN: ['1548-159X', '2163-7873']

DOI: https://doi.org/10.4310/dpde.2021.v18.n1.a5