On endpoint regularity criterion of the 3D Navier–Stokes equations
نویسندگان
چکیده
Let $(u, \pi)$ with $u=(u_1,u_2,u_3)$ be a suitable weak solution of the three dimensional Navier-Stokes equations in $\mathbb{R}^3\times [0, T]$. Denote by $\dot{\mathcal{B}}^{-1}_{\infty,\infty}$ closure $C_0^\infty$ $\dot{B}^{-1}_{\infty,\infty}$. We prove that if $u\in L^\infty(0, T; \dot{B}^{-1}_{\infty,\infty})$, $u(x, T)\in \dot{\mathcal{B}}^{-1}_{\infty,\infty})$, and $u_3\in L^{3, \infty})$ or \dot{B}^{-1+3/p}_{p, q})$ $3<p, q< \infty$, then $u$ is smooth Our result improves previous established Wang Zhang [Sci. China Math. 60, 637-650 (2017)].
منابع مشابه
A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations
We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...
متن کاملAn Osgood Type Regularity Criterion for the 3D Boussinesq Equations
We consider the three-dimensional Boussinesq equations, and obtain an Osgood type regularity criterion in terms of the velocity gradient.
متن کاملOn the regularity criterion of weak solution for the 3D viscous Magneto-hydrodynamics equations
Here u, b describe the flow velocity vector and the magnetic field vector respectively, p is a scalar pressure, ν > 0 is the kinematic viscosity, η > 0 is the magnetic diffusivity, while u0 and b0 are the given initial velocity and initial magnetic field with ∇ · u0 = ∇ · b0 = 0. If ν = η = 0, (1.1) is called the ideal MHD equations. As same as the 3D Navier-Stokes equations, the regularity of ...
متن کاملRegularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity∗
In this short note, we give a link between the regularity of the solution u to the 3D Navier-Stokes equation, and the behavior of the direction of the velocity u/|u|. It is shown that the control of div(u/|u|) in a suitable Lpt (L q x) norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Dynamics of Partial Differential Equations
سال: 2021
ISSN: ['1548-159X', '2163-7873']
DOI: https://doi.org/10.4310/dpde.2021.v18.n1.a5